Odpowiedzi Przykladowy arkusz 23 ...
Odpowiedzi Przykladowy arkusz 23 Matematyka, MATURA MATEMATYKA, ODPOWIEDZI OPERON MATEMATYKA
[ Pobierz całość w formacie PDF ]
Odpowiedzi i schematy oceniania
Arkusz 23
Zadania zamkniĘte
Numer
Poprawna
Wskazówki do rozwiĄzania
zadania
odpowiedŹ
1.
B.
W
(
x
)
=
-
x
11
+
x
12
-
8
=
x
11
(
x
-
1
-
8
W
(
-
7
)
=
(
-
7
)
11
×
(
-
7
-
1
-
8
=
(
-
7
)
11
×
(
-
8
-
8
=
(
-
8
[
-
7
)
11
+
1
]
Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem
W
(
-
7
)
>
0
.
2.
B.
m
=
10
log
10
2010
-
20
log
20
2011
=
2010
-
2011
=
-
1
1
1
k
=
log
100
=
log
100
2
=
log
10
=
1
2
m
=
-
k
3.
C.
Okrąg
x
2
+
(
y
-
3
2
=
3
ma środek w punkcie
(
0
, a jego promień
jest równy
3
>
1
.
Liczba
sin
a
<
1
, gdy
a
jest kątem ostrym.
Zatem prosta
x
=
sin
a
znajduje się w odległości mniejszej od środka
okręgu niŜ długość promienia okręgu. Prosta i okrąg mają dwa
punkty wspólne.
4.
D.
Kolejne liczby nieparzyste są kolejnymi wyrazami ciągu
arytmetycznego o róŜnicy .
2 Pierwszy z wyrazów ciągu jest równy
1, a ostatni 99 . Wszystkich wyrazów jest 50 . Obliczamy sumę tych
wyrazów.
S
=
1
+
99
×
50
=
2500
2
5.
C.
Dziewczynki mogą wejść do klasy na
1
×
2
×
3
×
4
×
5
=
120
sposobów, a
chłopcy na
1
×
2
×
3
×
4
=
24
sposoby.
Wszystkich moŜliwych sposobów jest więc:
120
×
24
=
2880
.
6.
B.
WyraŜenie
1
przyjmuje wartość największą, gdy jego
x
2
-
4
x
+
7
1
(
mianownik jest najmniejszy.
WyraŜenie w mianowniku jest trójmianem kwadratowym, który
osiąga wartość najmniejszą w wierzchołku paraboli będącej jego
wykresem.
x
=
a
-
b
=
4
=
2
2
2
7.
D.
Dziedzina funkcji to
-
4
. Funkcja ma trzy miejsca zerowe.
f
(
x
)
<
0
dla
0
<
x
<
4
.
Zbiór wartości to
-
4
.
8
A.
a
3
-
1
a
2
+
a
+
1
(
a
-
1
)(
a
2
+
a
+
1
a
+
1
:
=
×
=
a
-
1
a
+
1
a
+
1
a
+
1
a
2
+
a
+
1
a
-
1
=
4
a
=
5
a
+
1
=
6
9.
A.
Ułamek okresowy ma trzy liczby w okresie, na miejscu 22 stoi więc
cyfra
x
, gdyŜ
22
:
3
=
7
r 1 . Podobnie na miejscu 15 stoi cyfra 2
(15:3=5r0).
Zatem ułamek ma postać
1
(
732
)
=
1
732
=
1731
.
999
999
10.
D.
33
×
100
%
=
25
%
132
11.
C.
Błąd bezwzględny:
7
49
-
6
=
1
49
.
Błąd względny:
1
49
×
100
%
»
19
,
.
7
49
12.
C.
Proste
2
x
+
y
=
0
i
y
=
2
przecinają się w punkcie
(
-
1
2
. Proste
x
+
3
=
0
i
y
=
2
przecinają się w punkcie
(
-
3
2
.
Figurą, której pole naleŜy obliczyć,jest trapez prostokątny o
podstawach długości 3 i 2 i wysokości 2 .
2
P
=
1
(
+
2
×
2
=
5
2
13.
B.
Funkcja kwadratowa przyjmuje tę samą wartość dla argumentów 5
-
i 7 , zatem osią symetrii paraboli, będącej wykresem tej funkcji, jest
prosta
x
=
-
5
+
7
=
2
=
1
.
2
2
14.
A.
x
, – boki prostokąta
y
2
x
+
2
y
=
140
x
+
y
=
70
y
=
70
-
x
Zapiszemy funkcję określającą zaleŜność między polem prostokąta a
długością jego boku.
P
(
x
)
=
x
(
70
-
x
)
=
-
x
2
+
70
x
Funkcja przyjmuje wartość największą dla
x
=
-
70
=
35
.
-
2
Jeśli
x
=
35
m, to
y
=
70
-
35
=
35
(m).
Wymiary wybiegu to 35 m na 35 m.
15.
B.
Utworzone trójkąty są podobne, gdyŜ mają jeden kąt równy (kąt
wierzchołkowy) i stosunek odpowiednich boków trójkątów jest
równy:
6
=
4
=
1
,
12
8
2
10
=
x
1
,
2
2
x
=
10
,
x
=
5
16.
B.
h
– wysokość, na jakiej znajduje się latawiec
h
=
sin
30
a
12
h
=
1
12
2
h
=
6
m
3
17.
A.
W podanym ciągu geometrycznym
b
=
25
q
=
1
. Obliczamy wyraz
1
5
b
.
10
1
10
-
b
=
25
×
=
5
2
×
5
-
9
=
5
-
7
10
5
18.
D.
Kąt zawarty między styczną a cięciwą okręgu poprowadzoną z
punktu styczności jest równy kątowi wpisanemu opartemu na łuku
wyznaczonym przez końce tej cięciwy.
Kąt wpisany jest dwa razy mniejszy od kąta środkowego. W naszym
przypadku kąt środkowy ma miarę
90 . Kąt wpisany ma miarę
a
90
a
:
2
=
45
a
. Kąt między styczną a cięciwą jest równy kątowi
wpisanemu, ma więc miarę
45 .
a
19.
C.
5 . Kąt między przekątną
graniastosłupa a podstawą to kąt między przekątną graniastosłupa a
przekątną podstawy.
cos
a
=
5
2
=
2
10
2
20.
B.
Promień kuli, w kształcie której jest pomarańczą jest równy 6 cm.
Objętość kuli:
4
p
×
6
3
=
4
p
×
216
=
288
p
.
3
3
Obliczamy, ile soku moŜna otrzymać z pomarańczy.
80
%
×
288
p
»
0
×
288
×
3
14
=
723
,
456
»
723
(cm
3
)
Zadania otwarte
Numer
zadania
Modelowe etapy rozwiĄzania
Liczba
punktów
21.
Wyznaczenie tworzącej:
1
r
– promień podstawy stoŜka,
l
– tworząca stoŜka,
p
rl
=
= p
4
r
2
,
l
4
r
.
4
,
1
Długość przekątnej podstawy: 2
Obliczenie wysokości stoŜka:
1
l
2
=
r
2
+
h
2
,
(
4
r
)
2
=
r
2
+
h
2
,
h
2
=
16
r
2
-
r
2
,
h
2
=
15
r
2
,
h
=
r
15
.
22.
Narysowanie drzewka i obliczenie prawdopodobieństwa zdarzenia
1
przeciwnego do
A
:
A
– zadzwoni co najmniej jeden telefon,
B
– nie zadzwoni Ŝaden z telefonów,
0,5 0,5
telefon Ŝółty
z n
0,4 0,6 0,4 0,6
z n z n telefon czerwony
n – telefon nie zadzwoni,
z – telefon zadzwoni,
P
(
B
)
=
0
×
0
=
0
.
Obliczenie prawdopodobieństwa zdarzenia
A
:
1
P
(
A
)
=
1
-
0
=
0
.
23.
Obliczenie długości krawędzi sześcianu:
1
a
– długość krawędzi sześcianu,
a
3
=
a
+
3
a
(
3
-
1
=
3
a
=
3
=
3
3
+
1
.
3
-
1
2
5
[ Pobierz całość w formacie PDF ]
ebook @ do ÂściÂągnięcia @ download @ pdf @ pobieranie
Tematy
- Strona startowa
- ODP TECHNIK EKONOMISTA 2010, Matura, technik ekonomista zawodowy, technik ekonomista zawodowy, EGZAMIN PISEMNY, ODP
- ODP EGZAMIN 2011, Matura, technik ekonomista zawodowy, technik ekonomista zawodowy, EGZAMIN PISEMNY, ODP
- Odrębność j. polskiego na tle innych języków słowiańskich, Matura, Ściągi na maturę
- Odczynniki chemiczne Cu(OH) HNO3 itp, Chemia-matura
- ocena postepu w rozwoju - INWENTARZ H.C. GUNZBURGA JAKO NARZĘ DZIE DIAGNOSTYCZNE, Materiały ze studiów, Arkusze badawcze
- odp I - egzamin próbny 2004-2005, Matura, Biologia(1)
- odp II - próbny - listopad 2006, Matura, Biologia(1)
- odp I - próbny listopad 2006, Matura, Biologia(1)
- odp II - maj 2007, Matura, Biologia(1)
- odp II - maj 2006, Matura, Biologia(1)
- zanotowane.pl
- doc.pisz.pl
- pdf.pisz.pl
- minecraftpe.pev.pl
Cytat
Facil(e) omnes, cum valemus, recta consili(a) aegrotis damus - my wszyscy, kiedy jesteśmy zdrowi, łatwo dajemy dobre rady chorym.
A miłość daje to czego nie daje więcej niż myślisz bo cała jest Stamtąd a śmierć to ciekawostka że trzeba iść dalej. Ks. Jan Twardowski
Ad leones - lwom (na pożarcie). (na pożarcie). (na pożarcie)
Egzorcyzmy pomagają tylko tym, którzy wierzą w złego ducha.
Gdy tylko coś się nie udaje, to mówi się, że był to eksperyment. Robert Penn Warren